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A B S T R A C T

Extreme weather events caused by climate change can affect the energy sector in different ways. For example, 
extreme heat, cold spells, strong winds, or flooding may lead to increased energy demand and consumption, 
reduced energy production, or cause infrastructure failures and outages. Underserved communities are among 
those most impacted by power outages resulting from extreme weather events due to lower infrastructure in
vestment in the areas where they live. These phenomena encompass a variety of social and technical challenges, 
for which we propose a new, transdisciplinary framework to explore solutions for providing clean, affordable, 
and resilient energy systems to vulnerable and at-risk communities. The authors consider a new approach using 
perspectives from engineering, hazards science, and policy studies to identify and develop solutions for the 
expansion of the use of solar energy production coupled with increased storage capacities in places where power 
outages and social vulnerability intersect.
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PV Photovoltaics
LCOE Levelized cost of energy
EIA U.S Energy Information Administration
DOE United States Department of Energy
NASA National Aeronautics and Space Administration
RF Random Forest
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BGT Boosted Gradient Tree
BART Bayesian Additive Regression Tree
ENS Ensemble
MedVI Medical Vulnerability Index
GIS Graphic Information System
EMS Emergency Medical Services
NREL National Renewable Energy Laboratory
reV Renewable Energy Potential
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SAM System Advisor Model
ITC Investment Tax Credit
EPA United States Environmental Protection Agency
EO Executive Order
kWh kilowatt-hour
MW Megawatt

1. Introduction

Climate change is increasing the frequency and magnitude of 
extreme weather events worldwide. In particular, there are more 
extreme temperatures, heavy precipitation, and worsening droughts in 
some regions [1]. This phenomenon is having strong effects on com
munities, especially those that may be more exposed to extreme weather 
events, either because they are more prone to experience natural haz
ards or because their socioeconomic characteristics make these com
munities more vulnerable. Numerous other studies are identifying 
several patterns that connect impacts from extreme weather events and 
socioeconomic factors [2].

Extreme weather events are being captured by macroeconomic in
dicators, suggesting that they are starting to have an impact on both 
economic growth and national gross domestic product in several coun
tries. Fig. 1 shows the economic impact of weather events and climate 
disasters in the United States (U.S.) using data from the National 
Oceanic and Atmospheric Administration [3–5]. Tropical cyclones, se
vere storms, and drought have had the greatest economic toll, but all of 
the disaster categories have led to significant loss. In addition to the 
economic impacts, the increase in global temperature is also affecting 
the agricultural sector, as crop production has been threatened by 
extensive droughts. The impact on agriculture, as well as other sectors, 
can have a domino effect on labor dynamics as several people find 
themselves with reduced sources of income, making some people more 
socioeconomically vulnerable as a result of climate-induced extreme 
weather events [2].

Extreme weather events affect the energy sector in different ways, 
ranging from increased energy demand and consumption to reduced 
energy production, infrastructure failure, and grid outages. Each of 
these is projected to change in frequency and severity in North America 
given our warming world [6]. Some notable recent examples that show 
the significant human and economic tolls related to grid outages were 
Hurricane Maria in 2017 in Puerto Rico [7], Hurricane Michael in 2018 
in the Florida panhandle [8], and the Texas power crisis in 2021 due to 
extreme cold [9]. Oftentimes, vulnerable or marginalized segments of 
society are most affected by these extreme events due to social inequities 
and are already struggling to pay their energy bills [10–12].

As extreme weather events become more common and electricity use 
continues to grow, identifying which areas are most vulnerable to the 
negative effects of these events becomes crucial to increasing resilience 
[13]. Resilience represents the ability of a system to absorb and adapt to 
human-induced or environmental disturbances, ideally by recovering to 
a stronger condition [14–16]. The approach to developing solutions to 
these resilience challenges has primarily been focused on the technical 
elements within engineering [17]. Fig. 2(a) shows the total number of 
research articles related to each U.S. state for all types of hazards, while 
Fig. 2(b) shows the distribution of research articles per hazard type for 
all states.1 The scholarship efforts regarding power outages for each 
state do not necessarily mirror the actual economic impacts, shown in 2 

(c) for all types of disasters and hazards and 2(d) for tropical cyclones 
only.2 When breaking down the distribution of research across various 
hazard types within each state, it is surprisingly similar, demonstrating a 
redundancy of existing approaches towards studying this topic. As the 
authors propose in this review, a more transdisciplinary approach is 
needed to evaluate the complex relationships between the social and 
physical sciences to address grid stability in socially vulnerable areas.

One approach to solving this problem lies in expanding the use of 
photovoltaic (PV) energy production coupled with energy storage in 
places where power outages and social vulnerability intersect. Not only 
would this increase energy resilience, especially during extreme weather 
events, but also has the potential to lower electricity costs for low- 
capacity communities [20] and reduce air pollution which has been 
linked to negative health impacts [21]. It can also provide households 
with the energy required to keep communication and medical devices 
charged and to provide enough cooling to prevent related medical epi
sodes, such as during Hurricane Irma (2017) where the most common 
indirect cause of death was exasperation of an existing health issue [22]. 
However, various challenges remain that need to be addressed to bring 
forth solutions to improve electric grid reliability and provide clean, 
affordable, and resilient energy to socially vulnerable communities.

Capital is finite, and PV systems with energy storage (PV + storage) 
are capital-intensive investments. Often, the communities most vulner
able to grid outages caused by extreme weather events lack the financial 
resources to build out PV + storage infrastructure [20]. Policies should 
be put in place to encourage investment in these resources in vulnerable 
communities. The most effective policies should more precisely identify 
the locations most at risk in a physical and social sense. Additionally, the 
most appropriate locations for PV + storage are also dependent on 
technological constraints related to the electric power system (i.e., the 
grid). Increasingly, research on resilient energy systems such as micro
grids identifies the need for more participatory planning with an actively 
engaged population for where resilient systems will be used [23]. Fig. 2
(e) and (f) include the energy expenditures per capita and estimated 
potential annual energy production available for rooftop PV in each 
state. Collectively, this provides an interstate comparison of the finan
cial burden associated with energy consumption and the energy poten
tial for rooftop PV.

Another challenge is related to energy equity, which is the concern 
for fair and just access to energy services, resources, and benefits across 
all populations. For example, solar panels provide clean, low-cost elec
tricity, however are more commonly adopted by higher-income house
holds [24], indicating there are still significant energy equity 
implications to consider during this transition. An equitable approach 
takes into consideration the different experiences across populations 
while also actively engaging all impacted communities in the decision- 
and policy-making process [25]. Energy equity issues stem from a va
riety of sources, such as high energy prices in low-income areas, or 
pollution from energy systems inflicted on communities with fewer 
economic and political resources. Households that are not able to afford 
their electricity bills face higher rates of energy burdens which may lead 
to adverse health effects from compromised living standards [26]. Ac
cess to clean, distributed energy is one way to significantly improve 
health outcomes and energy resilience for underrepresented areas [27]; 
however, careful consideration of program and policy design choices is 
needed to maximize equity [24]. Similarly, the concept of ”equitable 
resilience” considers unequal access to resilience that goes beyond social 
vulnerability to also incorporate access to resources, participation into 
the decision- and policy-making arena, and ability to take part in resil
ience planning and development [28]. Deployment of more resilient 
energy solutions, such as PV + storage, requires considerable financial 
investment, therefore careful study and planning is needed to place 

1 This distribution is relatively consistent across all states.
2 Tropical cyclones are highlighted here because they have caused the most 

economic loss and are capable of causing widespread power outages.
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these assets where they can benefit communities equitably [20].
In this review, the case is made for a more transdisciplinary approach 

to evaluating the challenges and need for resilient energy systems that 
include multiple perspectives including engineering, computer science, 
hazards geography, technoeconomic analysis, and public policy. This 
article reviews relevant work from these various disciplines and pro
poses a transdisciplinary, geospatial framework focused on equitable 
grid resilience. Transdisciplinarity refers to an approach that places the 
interactions among several research disciplines in a holistic and inte
grated system that results in an evolving and collaborative sub- 
discipline [29]. Fig. 3 illustrates the key elements of this proposed 
framework and how each element fits together. This review is organized 
in the following manner. Section 2 reviews the availability of relevant 
data sources, analysis and modeling methods, and prior research find
ings related to connecting extreme weather to power outages in a 
spatially-resolved manner. This part of the overarching framework, 
shown on the bottom left of Fig. 3, relies on the use of historical outage 
and weather data to build models that can predict risk of outages for 
geographic regions of interest while considering a changing climate. 
Section 3 covers the links between social and medical vulnerability and 
power outages. Socioeconomic an medical data can be used to build 
models for quantifying vulnerability (bottom right of Fig. 3). This can be 
combined with risk maps to identify geographic regions and, depending 
on the spatial granularity of the data and models, specific communities 
that are both at an elevated risk of experiencing outages and socially or 
medically vulnerable. Section 4 discusses the interventions and tech
nological solutions available to increase energy resilience with an 
emphasis on the PV and energy storage systems (PV + storage). And 
finally, section 5 covers the policy implications and potential policy 
solutions. In the proposed framework, these elements would all be 
brought together, along with stakeholder feedback, and then used to 
determine the most appropriate technology and policy solutions in a 
spatially-resolved, and therefore community-specific manner. There are 
challenges in working with massive, heterogeneous datasets, but ap
proaches have been developed using high-performance computing and 
distributed storage [30].

2. Extreme weather and power outages

Extreme weather events have become a major cause of electric power 
outages in recent years. In the U.S., the annual impact of weather-related 
blackouts (i.e., power outages specifically) ranges from $20 to $55 
billion in U.S. dollars [31]. In the U.S., an average of 520 million cus
tomers were affected by power outages across 2447 counties between 
2018 and 2020; outage data show that about 62 % percent of the outages 

lasted 8 h or more and were caused by hurricanes, extreme storms, and 
heat [10]. High winds during hurricanes and storms are considered one 
of the main causes of wide-area electrical disturbances. For example, 
Hurricane Sandy (2012) resulted in 8.5 million people being without 
power, and Hurricane Michael (2018) resulted in 1.7 million people 
being without power [32,33]. In Florida, hurricane-induced flooding 
and wind, are the two most frequent causes of power outages [34].

In addition to the wind, other weather drivers result in direct damage 
to the electricity system infrastructure. Lightning strikes that affecto
verhead conductors can result in short-circuit faults, which in turn leads 
to electrical protection and disconnected lines. Cold waves, heavy snow, 
and ice accumulation increase the likelihood that overhead lines and 
towers fail. Under freezing conditions, ice and snow may gather on in
sulators bridging the insulators and provide a conducting path, resulting 
in flashover faults. In the winter of 2021, Texas suffered three major 
winter storms that produced equipment problems (i.e., power equip
ment in Texas was not winterized) and high demand for electricity. At 
the peak of the crisis, 4,011,776 customers experienced power outages 
throughout Texas [35]. Wildfires also impact the power grid, a recent 
example is the 2021 Colorado wildfire, also known as Marshall Fire, 
which impacted Xcel Energy’s natural gas infrastructure that supports 
the system in two Counties. High temperatures and heat waves limit the 
transfer capability of transmission lines and increase the energy losses 
and the line sagging.

The frequency of power outages caused by extreme weather events is 
already on the rise, driven by the increasing occurrence of severe 
weather events and the aging infrastructure of the power grid. 2017 is to 
date recorded as the costliest Atlantic Hurricane Season since 1851, the 
year in which losses and damages assessments began to be recorded. 
2017 was followed by the 2012 and 2008 seasons which also recorded 
several weather-related power outages [36]. The increase in consumer 
power outages, partially due to an increase in extreme weather events 
[37], also correlate with increases in related health incidents such as 
increases in carbon monoxide poisoning from generators [38]. As a 
result, it is important to identify areas that are most vulnerable to power 
outages due to extreme weather events.

2.1. Power outage data sources

In reviewing existing literature pertaining to this issue, there is a 
dearth of spatially granular data related to power outages. While com
munity aggregated data has been used to reveal disparate impacts dur
ing this extreme events such as the Texas winter storms [39–41], there 
are limited publicly available sources of large-scale power outage data 
with the type of spatial resolution needed to locate specific communities 

Fig. 1. Cost in millions of U.S. dollars of weather events and climate disasters with impacts over one billion U.S. dollars shown as: (a) the total cost per disaster type; 
and (b) the cost per year for each disaster type. The data source is [3].
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that have disproportionately experienced outages. This highlights the 
need for a replicable methods of extracting power outage data on a 
granular level and public sources of this data.

Specifically within the U.S., many of the public outage datasets are 
reported at the county of city level, like data from the U.S. Department of 
Energy Form OE-417 submission [34] and the more recent EAGLE-I 
dataset [42,43]. However, in areas that are geographically large, have 
high populations, and are socioeconomically diverse such as 
Miami-Dade County in Florida, county or city-wide averages may mask 
more vulnerable populations at the neighborhood level.

As for private direct access to power outage data, electric utility 
companies are the primary source of outage data in their transmission 
area. However, utility companies are disincentivized to share this in
formation if they feel that it may create financial, legal, or public 

relations liabilities. Another method of accessing the power outage data 
directly is through smart meter data provided by consumers (e.g. Pecan 
Street). However, that requires large consumer cooperation and mobi
lization in order for it to be scalable across many areas.

In the absence of direct power outage data from electric utilities, one 
option is to process information for data sets whose contents correlate 
with extreme weather resilience. For example, National Aeronautics and 
Space Administration (NASA) nighttime satellite imagery can be used 
for the identification of power outages based on the visibility of lights. 
This is an indirect method of measuring power outages, however, it can 
strongly correlate with power outages during extreme weather events. 
For example, the nighttime images taken via NASA satellite before and 
after Hurricane Michael in 2018 as depicted in Fig. 4 show the extensive 
power outages in the area as a result of the storm [44]. There is a clear 

Fig. 2. The number of research articles published related to extreme weather and power outages shown: (a) for all hazards as a map of U.S. states all hazards; and (b) 
for all states, but broken down based on hazard type. Maps of U.S. states showing: (c) the total cost in millions of U.S. dollars of large weather events and climate 
disasters since 1980 for each state from Ref. [3]; (d) cost in millions for tropical cyclones specifically; (e) annual energy expenditures per capita [18]; and and (e) 
estimated potential annual production from rooftop PV per capita estimated from Google’s Project Sunroof [19].

S. Belligoni et al.                                                                                                                                                                                                                                Renewable and Sustainable Energy Reviews 213 (2025) 115434 

4 



abundance of areas that experienced a decrease in measurable light.
The limitation of using indirect data sets such as these is that there is 

a degree of noise that has to be filtered out. In this case, the type and 
abundance of cloud coverage affects the amount of light shown, there
fore another resource is needed to verify cloud coverage at any given 
pixel during the time that this was taken in order to improve the accu
racy. Additionally, other indirect sources for power outage data are not 
always accessible. For example, it may be possible to conduct a social 
medias’ posts analysis by identifying keywords that may find posts 
discussing power outages in a given area. This could be possible by 
making use of tools for social media content analysis (including embed 
social medias resources such as those available in Facebook) and apply 
them to individuals and groups (such as, neighborhood Facebook 

groups) posts. Additionally, another potential source of indirect data is 
food spoilage insurance claims, however obtaining those claims would 
involve requesting this information from the company that fulfilled the 
claims, who may not be willing to cooperate.

2.2. Parameters that affect power outage

Power outages often occur due to the complex interaction between 
various weather variables, vegetation cover, and infrastructure. Most 
weather-related power outages are caused by falling trees or their limbs 
affecting electricity distribution lines and poles. Major outages are more 
often caused by damage to electricity transmission lines [31]. Thus, 
vegetation management is crucial to reduce the risk of power outages. 

Fig. 3. Illustration of the proposed transdisciplinary, geospatial framework for promoting clean, affordable, and resilient energy to socially vulnerability 
communities.

Fig. 4. NASA nighttime satellite imagery (a) before and (b) after Hurricane Michael, on October 6, 2018 and October 12, 2018, respectively. Image sourced 
from Ref. [44].
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This is well reflected in the performance of the weather-outage models; 
they have shown lower accuracy if vegetation information (usually tree 
trimming) is not accounted for. The electric system infrastructure (e.g., 
electric transformers, fuses, reclosers, switches), the number of cus
tomers served, and the type of soil have also been found crucial to model 
power outages. Although the weather-only model has shown lower ac
curacy than models including infrastructure and vegetation information, 
they still perform fairly well [45–48].

The relative relevance of the weather variables in the outage- 
weather model depends on the region [49] and on the type of weather 
event. In Connecticut [45], concluded that total precipitation, maximum 
and mean temperature, and mean wind gusts are the most important 
variables in extra-tropical cyclones while maximum specific humidity, 
maximum and mean temperature, and maximum soil moisture are the 
most significant weather variables in thunderstorms. Importantly, 
models which ignored near-surface parameters were unable to 
adequately predict outages related to thunderstorms. Staid et al. [50] 
used tropical cyclone winds to obtain the number of customers without 
power for each census tract in the Gulf of Mexico and the Atlantic coast 
of the U.S.

Usually, the set of weather variables also includes precipitation and 
pre-storm condition indices such as soil moisture at different depth 
levels [45,47,48], temperature [45,51,52], humidity [45,51], drought 
[53] and storm intensity classification [45,51], as well as the total 
number of customers served by the utility in a grid cell and information 
about tree trimming. It was shown that when the tree-trimming variable 
is removed from the model, the performance drops, but the model can 
still predict outages with reasonable accuracy. Finally, results suggested 
that models which only consider gust wind speed, as is typical for en
gineering fragility curves, are unlikely to accurately model failures in 
the power system.

Despite the extensive literature on storm-weather power outage 
models, some hazards have been widely neglected such as flooding from 
surge and/or precipitation. Personal communication with utility com
panies highlighted that flooding is particularly relevant for power out
ages, especially in hurricaneprone areas [54]. used a hurricane outage 
model to predict customer outages for Hurricane Sandy in the Northeast 
of the United States. Although the model did well for many regions, it 
underestimated customer outages in Connecticut. It was hypothesized 
that this may have been because storm surge was not included in the 
model. However [47], found that the storm surge only contributed to a 
minor fraction of the customer outages in the region while the majority 
was related to trees interacting with the overhead lines. The existing 
discrepancy regarding the relative importance of flooding in power 
outages underscores the need for more comprehensive assessments on 
the topic.

The above-mentioned weather events cause direct damage to the 
power system infrastructure, but weather events can also have indirect 
effects. Sustained heat waves often cause significant changes in the load, 
comlicating electricity demand predictions. Unanticipated higher de
mand for space conditioning and refrigeration during heat waves has led 
to rolling outages in the past. During a heat wave in September 2022, a 
California grid operator issued a power grid emergency alert to conserve 
electricity use to prevent outages. In this context [55], found that the 
cooler demand could be underestimated if only air temperature is 
accounted for, neglecting the effect of humidity, as it is usually done. 
They also showed that the relative importance of humidity and tem
perature varies greatly across a region.

2.3. Machine learning models

In order to better anticipate and reduce the impacts of weather- 
induced power outages, several studies have developed forecast 
models to derive the extent and magnitude of the outages. A summary of 
these is provided in Table 1. Usually, models are designed to predict the 
expected number of outages, defined either by the number of customers 

without power or the number of locations that require manual inter
vention to restore power. A diverse range of machine learning tech
niques exists, and they have been applied individually or in conjunction 
with each other in numerous ways. The most frequent machine learning 
algorithms used include random forest (RF), decision tree (DT), boosted 
gradient tree (BGT), an ensemble of models of RF and DT (although 
ensembles of other models can be found in the literature), and Bayesian 
additive regression tree (BART) [45,47,48,56]. To a lesser extent, sta
tistical models such as the generalized linear model and the generalized 
additive model have been also applied to predict power outages [57,58]. 
Overall, weather-outage models use the same type of input pre
dictors/parameters, which includes information on infrastructure (i.e., a 
precondition of the power grid), vegetation (e.g., cover, type of vege
tation, and trimming), and weather conditions (e.g., wind, precipitation, 
temperature).

The literature describes a best practice for using machine learning 
techniques in analyzing impacts on the electric power system. Work 
from Ref. [47] compared RF, DT, BGT, and an ensemble (ENS) of the 
three models to predict the number of outages per grid cell in 

Table 1 
Summary of machine learning approaches to build weather-outage models.

Target Input Model(s) 
Tested

Best Model

Number of 
outages per 2 
km grid cell

Weather, grid 
infrastructure, land 
cover, vegetation [45]

Decision tree, 
gradient-boosted 
tree, random forest, 
ensemble 
regression, and 
BART

BART

Count of outages 
per grid cell 
(>5 min) [47]

Simulated weather for 
89 storms using WRF 
model variables 
including wind gust, 
wind 
stress, wind at 10 m 
height, soil moisture, 
precipitation rate 
joined with grid 
information, land 
cover information

Decision tree, 
gradient-boosted 
tree, random 
forest, and ensemble 
regression

Ensemble 
regression

Outage duration 
caused by 
hurricane [48]

Land use and land 
cover, hurricane 
duration and intenstiy, 
precipitation, soil 
moisture, wind speed

BART, regression 
trees, accelerated 
failure time (AFT) 
and Cox 
proportional hazard 
models (Cox PH)

BART

Electricity 
consumption 
(GWh/month) 
[56]

Temperature, 
precipitation, wind 
speed, wind gust, 
visiblity, dew point 
temperature, and 
economic data

BART, GLM, GAM, 
MARS

BART

Outage duration 
[57]

Wind gust, 
precipitation, ice 
accretion, land cover, 
duration of strong 
winds

AFT AFT

Number of 
outages [58]

Hurricane 
characteristics, land 
cover, non-hurricane 
climatic data, grid 
information

GLM, GAM GAM

Major outages at 
the state level 
[52]

Socioeconomic data, 
electricity 
consumption, state- 
level climate and 
weather data, land use 
data, grid information

SVM, RF Twostage 
hybrid 
risk 
estimation 
model

Utility-reported 
power outages 
for each storm 
event [59]

Weather data from 
ERA5 and ERA5-Land, 
grid information, land 
cover, tree canopy 
cover

GBM, RF, optimized 
model (OPT)

OPT
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Connecticut, U.S. for 89 storms including thunderstorms, blizzards, 
Nor’easters, and hurricanes. Combining magnitude and spatial accu
racy, the ENS performed the best, followed by the RF [45]. compared the 
same set of models (DT, BGT, RF, ENS) in addition to BART, for 76 
extra-tropical storms and 44 convective storms in Connecticut. The 
BART model performed better than others, followed by BGT, ENS, DT, 
and RF. A similar conclusion was drawn by Ref. [48], who predicted the 
mean outage duration in the central region of the Gulf of Mexico using 
data for three different hurricanes. They tested the accelerated failure 
time regression, cox proportional hazards, BART, and a multivariate 
adaptive regression spline. They found that the BART model out
performed all other statistical models [56]. tested five different models 
(generalized linear model, generalized additive model, multivariate 
adaptive regression splines, ENS-based tree model, and BART) to predict 
power consumption in Florida, U.S. and found BART to outperform 
other models. Furthermore [52], developed a two-stage hybrid machine 
learning model combining support vector machine and RF to predict the 
extreme outages in the USA at the state level [59]. proposed a frame
work to classify the severity of an outage event and prediction based on 
RF, BGT, and ENS (RF + GBT) models for the Connecticut service ter
ritory of Eversource Energy. They found that the ENS showed better 
performance in comparison to single models. Overall, based on the 
above-mentioned studies, the BART model has been found to yield 
better outage predictions, followed by ENS.

2.4. Climate change impact on power outages: relevance in Florida

Climate change is expected to affect many of the weather variables 
discussed above and hence will likely also affect the operation and 
reliability of power systems [60]. For example, there are temperature 
thresholds above which the operation of transformers and overhead 
lines is impacted. With the expected continuous increase in the ambient 
temperature certain elements of the system will likely have to be 
derated. The same changes in temperature will likely also negatively 
affect the efficiency of thermal power plants [60]. The continued rise in 
sea level will threaten coastal assets such as oil and gas pipelines and 
also facilitate coastal flooding due to elevated base water levels onto 
which tides and storm surges are superimposed. Changes in rainfall 
patterns will lead to more flooding in certain areas and more drought 
periods in others. The former can directly impact power system infra
structure, while the latter affects hydropower generation and the 
availability of water for cooling purposes in thermal and nuclear power 
plants [60].

The U.S. Department of Energy in its Regional Vulnerabilities and 
Resilience Solutions report (2015) [61] indicated that the Southeast 
region of the country hosts a large amount of energy infrastructure in 
low-lying coastal plains that are vulnerable to increases in flooding. 
High winds, coastal erosion, flooding, and large waves from hurricanes 
and sea level rise-enhanced storm surges threaten oil and gas produc
tion, ports, pipelines, refineries, and storage facilities, as well as elec
tricity generation and transmission assets. Higher temperatures and 
more frequent, severe, and longer-lasting heat waves are also projected 
for the Southeast, potentially increasing peak electricity demand for 
cooling while reducing the capacity of the thermoelectric generation 
and transmission systems needed to meet the increased demand. In this 
regard, Staid et al. [50] identified the Houston, Texas, New Orleans, 
Louisiana, and Miami, Florida, metropolitan areas to be heavily 
impacted even for scenarios of lower-intensity storms. On the contrary, 
Alemazkoor et al. [62] concluded that hurricane-induced power outage 
risk under climate change is predominantly driven by the uncertainty in 
the future frequency of hurricanes. Further research is needed to assess 
changes in the frequency of extreme events taking into account the 
uncertainties of projections.

Florida is not exempt from the extreme weather events experienced 
in the Southeast region. The state encounters various climatic phe
nomena, heat waves, inland/coastal floods, and strong winds, the latter 

two often resulting from hurricanes. In addition, the state is experi
encing a steep increase in population, which can burden the power 
system under certain weather conditions such as high temperatures. As 
mentioned above, the frequency and magnitude of these extreme 
weather events are expected to change under a warming climate. There 
have been strong developments in short-term power-outage prediction 
models, however, the evaluation of the changes in long-term power 
outages has been limited to the study of hurricane frequency and un
certainties [62] and for changes in the cooling demand [55]. There is a 
need for infrastructure providers and emergency managers to plan on 
much longer time scales as recognized by other authors [50], including 
not only temperature and hurricanes but all other weather parameters 
that have been recognized to influence power outages.

2.5. Local study areas vs. large study areas

As mentioned above, power outages are a function of weather con
ditions, vegetation cover, and infrastructure, all of which exhibit sig
nificant spatial variation. In addition, the impacts of climate change on 
weather patterns also vary across different regions. Therefore, con
ducting local studies becomes imperative in order to capture the char
acteristics of specific areas and deliver more accurate short-term power 
outage forecasts, as well as long-term projections. By utilizing localized 
weather-outage models, it becomes possible to forecast weather events 
in a more realistic manner and gauge the resilience of specific regions 
against fluctuating weather conditions.

3. Social and medical vulnerability

Understanding the needs of vulnerable people is of utmost impor
tance, especially among emergency managers, public health officials, 
social workers, and social service professionals. However, in cases of 
disasters or emergencies where sensitive populations may require aid in 
adequately preparing for, responding to, recovering from, or mitigating 
hazards, emergency management officials and planners need detailed 
information to anticipate and meet often very specific needs [63]. From 
this perspective, vulnerability represents the potential for loss or harm 
among individuals and communities facing power outages stemming 
from hazards, disasters, or energy system insecurity, such as those we 
observed in the Texas 2021 winter power failure [64,65] or those that 
occur every time a hurricane makes landfall. In hazard literature, the 
vulnerability concept broadly includes the structural vulnerability of the 
infrastructure system (power system), often called a biophysical 
vulnerability, and uneven exposure of individuals and households (to 
the power system) based on social, political, and economic factors, 
usually expressed as social vulnerability [66,67]. Generally, social 
vulnerability refers to those characteristics of a person or group and 
their situation that influence “their capacity to anticipate, cope with, 
resist, and recover from the impact of a natural hazard (an extreme 
natural event or process)” [68]. From a practical perspective, under
standing social vulnerability determinants means that decision-makers 
should be able to determine what supplies, equipment, and personnel 
are needed to respond effectively in emergencies which requires sound 
knowledge of a region’s social, economic, and baseline health 
conditions.

Consequently, understanding the vulnerability of a population re
quires a location-based assessment of both socioeconomic sensitivities 
and special medical needs, which may represent different sub- 
populations. Although various methods are employed to empirically 
assess those needs to understand the spatial distribution of vulnerable 
and marginalized populations, the social vulnerability index (SoVI) is 
the most popular and widely used in hazard planning, disaster research, 
and decision-making in emergency management [67]. SoVI models the 
geographic distribution of vulnerable populations based on 29 different 
variables that stem principally from vulnerability literature: employ
ment structure, housing, population structure, race/ethnicity, 
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socioeconomic status, and special needs [63]. Using a statistical data 
reduction approach, these variables are reduced to major components of 
vulnerability, which can later be mapped using geospatial tools and 
techniques.

Additionally, supporting the medical and health needs of impacted 
populations is another challenge to emergency managers during di
sasters and emergencies. An empirical assessment method called Medi
cal Vulnerability Index (MedVI) is used to understand the medical 
necessity of an area of interest [69]. MedVI is based on the theoretical 
framework of social vulnerability and is a companion concept of SoVI 
utilizing a similar methodological approach. MedVI is constructed from 
two key concepts; health needs and healthcare access, from medical 
vulnerability literature and is represented by 36 indicators in four 
distinct themes: physical health needs, psychological health needs, so
cial health needs, and healthcare access [70,71]. The variables are 
reduced to major principal components of medical vulnerability using 
factor reduction technique and have the utility of mapping using a 
Geographic Information System (GIS) environment.

3.1. Social and medical vulnerability and power system failure

Advanced industrial societies are becoming more technology- 
dependent and are thus more vulnerable to technology failures. Power 
systems, one of the critical infrastructures of modern societies, are 
exposed to various activities such as severe weather, intentional attacks, 
equipment failures, fuel supply emergency, and islanding [38]. Power 
system failure is identified as ”the single most vulnerable system in our 
critical infrastructure” [72], and such disruptions and failures will 
become more frequent with increasing climate extremes and affect more 
people [38]. Power system failures do not impact individuals equally, 
and access to proper resources (or lack thereof) can significantly affect 
how individuals deal with long-duration outages [73]. The relationship 
between social vulnerability and power outages has recently been 
explored [10,73–75]. This nascent literature shows that various socio
economic and demographic characteristics play significant roles in 
increasing health risks, power outage preparedness, and willingness and 
means to evacuate if necessary [76–80]. These early results highlight a 
need to identify socially vulnerable groups and medically vulnerable 
communities so that adequate resources, information, and assistance 
can be prepared in a more targeted way during such events.

Past studies have shown that differential exposure to such failure 
dramatically impacts sub-populations. For example, the collapse of the 
power grid system in 2003 in North America caused ninety excess deaths 
in New York City, New York, alone, a rise in mortality of 28 %. The death 
rates were highest for those aged between sixty-five and seventy-four, 
which shows the differential sensitivity of the population to such 
events [77]. A study in the Midwest region of the United States indicates 
that ZIP codes with lower median household income have experienced 
more power outages during the study period between 2017 and 2022 
[81]. Other research found that American Indian populations were 
positively correlated with average outage duration at the census block 
group level, showing unequal exposure to such failures [11]. Addition
ally, the existing literature suggests that power outages have significant 
health consequences ranging from carbon monoxide poisoning, 
temperature-related illness, gastrointestinal illness, and cardiovascular, 
respiratory, and renal disease hospitalizations, especially for individuals 
relying on electricity-dependent medical equipment [38]. After a 2003 
power system failure, hospital emergency department visits and ad
missions due to respiratory problems increased, especially among 
women, elderly persons, and people suffering from chronic bronchitis 
[76]. During a derecho event (destructive thunderstorms) in West Vir
ginia in 2012, utilization of Emergency Medical Services (EMS) and 
hospital resources increased substantially, from EMS scene responses to 
inter-facility transfers and standbys increasing by more than 50 percent 
over the previous year [82]. Thus, power system failure studies should 
consider factors such as socioeconomic and other social and medical 

vulnerabilities as well as how community resiliency can mitigate and 
minimize the adverse impacts of widespread major power outages.

4. Technological solutions

The provision of reliable and affordable electricity is essential for 
economic growth and people’s lives. The best way to achieve power grid 
resilience is through holistic resilience planning [83], as well as 
continuous advancement of grid technology and diversification of sus
tainable energy resources.

Technological solutions to achieve resilience proposed in existing 
literature often require some or all of the following. 

• Installation and diversification of additional energy resources;
• Increase of power flow capacity, and reconfigurability of a power 

system into multiple microgrids [84];
• Optimization, control, and automation to increase flexibility, 

redundancy, decentralization, self-organization, and coordination 
[85];

• Implementation through transparency, collaboration, and foresight 
considerations [85].

Also, every power system has unique features, and hence solutions 
must be developed for specific communities and their circumstances. 
And, a combination of tailored solutions should be used to address all 
potential vulnerabilities.

To achieve resilience of the main grid under extreme weather con
ditions existing literature suggests the necessity for major generation 
assets as well as transmission networks need further diversification and 
decentralization. Examples of these include: (1) hardening grid infra
structure, including transmission line fortification, flood prevention of 
substations, and transmission capacity enhancement [85]; (2) diversi
fication of generation mix to sustain power generation under supply 
disruptions and extreme weather conditions; (3) spatial distribution and 
decentralization of power generation by adding utility-scale wind farms, 
PV farms, energy storage, and other assets (such as hydrogen); and (4) 
enhance interconnections among regional grids. At the distribution 
level, resilience enhancement measures include: (1) underground dis
tribution lines; (2) islandable and interconnected microgrids for local 
infrastructure needs and critical loads; (3) community PV and energy 
storage to power communityshared facilities such as a resilience hub; 
and (4) behind the meter distributed generation, such as rooftop solar 
and energy storage, coupled with grid-forming inverters (which estab
lish the voltage to supply electricity to individual homes during grid 
outages) and smart home electricity panels (which enable classification 
and grouping of various loads in the homes and make them controllable 
loads). Upon choosing a specific resilience strategy, additional studies 
should be undertaken to ensure operational reliability, effectiveness, 
and economic benefits.

From the technical perspective, renewable energy resources such as 
PV and wind are highly variable, and there is a limit on how many 
variable resources can be incorporated into a distribution network 
without violating operational voltage limits. Determination of the limit, 
referred to as hosting capacity analysis [86], can be done using power 
system simulations. Typically, distribution networks would experience 
voltage issues when the renewable penetration level exceeds 20 %. 
There are several ways to increase the penetration level and maintain a 
stable and admissible voltage profile across the distribution network.

The first is the incorporation of battery-based energy storage to 
smooth out the PV production variability (i.e., PV + storage), often 
called PV smoothing, and the trade-off is the cost. The others are 
cooperative controls of both reactive power and active power (the latter 
of which can be accomplished by either storage control or load control 
or both). To achieve a high level of resilience, it is desirable to raise the 
PV penetration level to the maximum base load, i.e., at or over 100 % 
penetration so that the excess PV generation during the PV peak hours 
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can charge the storage devices within the network. To enable such 
extreme penetration, the so-called control enable hosting capacity 
analysis should be carried out, and a distributed cooperative control 
needs to be implemented to coordinate the control actions among the 
distributed energy resources. Both of them are embedded in the open- 
source software package MA-OpenDSS [87].

The control-enable hosting capacity determination is a two-stage 
greedy search algorithm to find realistic worst-case scenarios (in terms 
of operational voltages) for 100 %–200 % PV penetration, considering 
both the location and the size of the PVs in the primary and the sec
ondary nodes of a feeder [88]. In the first stage, the worst-case scenario 
is found by considering PV locations only in the primary nodes. In the 
second stage, the worst-case PVs from the parent primary nodes are 
redistributed further down throughout the secondary children’s nodes 
by taking into consideration the size of the PVs. The PVs distributed in 
the secondary nodes are assumed to not exceed twice the amount of the 
total load in the secondary node, and any remaining PVs are left on the 
parent primary node. The process is repeated feeder by the feeder, and 
the worst-case scenarios for all the feeders are combined to obtain the 
worst-case scenario for each system. This two-stage greedy search 
approach reduces the search computational time which, otherwise, 
would have been intractable for n! combinations required for a feeder 
with n nodes. Once the worst-case scenarios are identified, the second 
algorithm of distributed cooperative controls can be applied to perform 
reactive power compensation so all the feeders in the distribution 
network can be operated adaptively and autonomously to ensure all 
voltages are within the operational range (0.95–1.05 per unit).

In Fig. 5, the first sub-figure shows a sample 100k-node system for 
which the greedy search algorithm determines the worst PV distribution 
of 100 % penetration. The distribution network voltage profile of the 
worst-case PV penetration without and with cooperative distributed 
reactive power control are shown as the second and third sub-figures, 
respectively. Upon completing control-enabled hosting capacity anal
ysis, the planner can choose multiple configurations of PV and energy 
storage to perform techno-economic analysis and in turn, make 
decisions.

A holistic resilience plan and the use of modern grid technologies, 
like those described previously, enable the integration of PV systems 
with and without storage. PV systems are inherently clean (i.e., no direct 
emissions), not subject to fuel supply issues and price volatility, and 
provide numerous environmental and public health benefits compared 
to fossil fuel resources [89–91]. Like virtually any technology, the 
adoption of PV is strongly linked to its economic competitiveness 
compared to competing options. Technoeconomic analysis plays an 
important role in evaluating PV systems and PV + storage systems in 
comparison to fossil fuels, as well as other alternative sources of energy. 
Often, the levelized cost of energy (LCOE) is one of the key metrics being 
calculated. The usefulness of LCOE is that it provides a means of 
comparing different energy generation resources against each other and 

against, in this case, typical retail electricity rates.
A variety of tools and methods exist for this type of analysis, and they 

are often dependent on a wide variety of factors. LCOE itself can be 
simply described as the lifetime cost of the energy system divided by the 
total energy produced over the life of the system. For a PV or PV +
storage system, the majority of the cost is paid at the beginning of the 
system’s life in the form of hardware costs and soft costs (e.g., design, 
installation, permitting, financing, sales, overhead). The typical war
rantied lifetime for PV modules and many of the other components is in 
the range of 25–30 years normally, so there are naturally some opera
tions & maintenance costs incurred, but these are relatively low for most 
PV systems.

Ground-mounted utility scale PV systems without energy storage 
have the lowest LCOE due to lower hardware and installation costs 
driven by economies of scale and have the largest market share [92], 
compared to residential and commercial rooftop. The total installation 
cost per watt (W) for utility scale PV are around $1.3/W in the U.S. [92], 
compared to around $2/W for larger non-residential PV and closer to 
$4/W for residential PV [93] depending on the state. However, utility 
scale PV does not provide distributed resilient power to communities in 
the case of an outage because it is reliant on transmission and distri
bution infrastructure. Nor does residential PV if some type of energy 
storage option, like batteries, is not included. Grid-connected inverters 
without storage shut down when power from the utility is lost, in order 
to comply with interconnection standards aimed at preventing unin
tentional islanding [94–96]. There are various ways to assess the value 
of backup services to residents, such as using estimates of current elec
tricity rates or what residents are willing to pay to keep their power on. 
While the average U.S. residential price of electricity is approximate 
$0.14/kWh, studies have found that residents are willing to pay between 
$0.3/kWh to $1.2/kWh for backup services to maintain full or partial 
electric services during a blackout [97]. Achieving LCOE values below 
$0.14/kWh is already achievable in the U.S. and abroad [98], even for 
residential PV + storage systems [99], although these system will always 
have a higher LCOE than utility scale systems at less than $0.04/kWh 
currently in the U.S [92].

In addition to costs, the energy yield of the PV over the life of the 
system is also critical being the denominator in the LCOE equation. Yield 
is driven be a variety of factors, including location’s expected incident 
solar irradiance over time (i.e., solar irradiation) and local climate (e.g., 
ambient temperature), the specific mounting configuration and result
ing microclimate, and the specific PV cell and module technology used. 
Locations with high irradiation are critical, because the output power 
and therefore yield are directly proportional to irradiance and irradia
tion, respectively. The power decreases slightly as the PV cell and 
module operating temperature increase, and the resulting temperature 
coefficient is strongly dependent on the PV cell technology and module 
design. The local climate, microclimate, and module selected will also 
impact the performance loss rate (i.e., degradation rate) of the system 

Fig. 5. An 100k-node system: 12 feeders, 53,011 buses, 124 + j41 MVA total load.

S. Belligoni et al.                                                                                                                                                                                                                                Renewable and Sustainable Energy Reviews 213 (2025) 115434 

9 



[100].
A variety of reliability and durability issues have been studied in 

fielded PV systems and many resolved over the years for older tech
nologies [101–111], but questions remain for newer technologies 
[112–123]. Additionally, component failures require additional human 
intervention and add cost. And finally, extreme weather itself can also 
have an impact on PV system performance [124], although snow loading 
[125] and hail [126,127] appear to have a larger impact on PV system 
performance than things like tropical cyclones. Manufacturing 
metrology and field inspection techniques and analysis methods have 
been developed to monitor PV performance and identify defect and 
problems related to manufacturing issues, degradation processes, or 
extreme weather events [128–139]. A variety of modeling and simula
tion tools have been developed by the PV R&D community to calculate 
the expected performance of PV systems using these various inputs, 
including tools using physical and analytical models (e.g., pvlib 
[140–142], System Advisor Model [143], PySAM [144], PVsyst [145]) 
and newer data-driven models [146].

In terms of existing rooftop PV system installations in the continental 

U.S., California is the leader in the total number of installations. In terms 
of the annual potential energy production from rooftop PV, estimates 
from tools like Google’s Project Sunroof indicate virtually all U.S. states 
have significant potential [19]. Open tools and databases like Project 
Sunroof, DeepSolar [147], and the U.S. Large-Scale Solar Photovoltaic 
Database [148] enable people to locate existing PV systems and identify 
suitable locations for adding PV, a shown in Fig. 6. These tools, when 
used in conjunction with the grid planning tools described previously, 
can assist in efforts to promote clean, affordable, and resilient energy 
systems.

Ongoing research aims to develop innovative machine learning and 
optimization algorithms that address outage forecast for specific com
munities, their technology solution of PV + storage, resilient enhance
ment of distribution network, and their technoeconomic analysis and 
optimization. While the algorithms must be generic, scalable, and 
computationally efficient, the technology solution and its corresponding 
technoeconomic analysis are community dependent because physical 
location, power system topology, physical attributes of the distribution 
network, and load/generation distribution all play their roles. In 

Fig. 6. (a) Example of Google’s Project Sunroof highlighting suitable rooftops for PV in Florida, Orange County, and a specific building in downtown Orlando [19]. 
(b) Example of the U.S. Large-Scale Solar Photovoltaic Database showing Florida and a specific large, utility-scale PV system near Orlando [148].
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Ref. [149], a stochastic machine learning framework is developed to 
forecast outages in specific distribution networks, and the framework is 
shown to have transfer learning capability. In Ref. [150], a novel scheme 
is presented to achieve resilience of distribution networks in a time 
shared manner and by using relatively small distributed energy re
sources but adding a small number of circuit reclosers that enable seg
mentation and dynamic microgrids. And, PV + storage can further 
enhance the resilence solution as PV not only reduce local energy needs 
but also potentially charge the battery storage systems and in turn 
extend their operational periods [151].

5. Policy solutions

Individuals and communities play an important role in building 
community resilience. As distributed energy resources become more 
common, and consumers transition to prosumers that contribute to the 
design and supply of the electricity grid, the models for how resilient 
grids are governed and incentivized are changing [152,153]. Tradi
tionally, electricity is provided through centralized electric utility pro
viders connected to large power plants that generate electricity that is 
transmitted across the grid to consumers. However, smallscale PV sys
tems (less than 1 MW in size) in the United States have grown by over 
800 % since 2014 from 5000 MW to almost 48,000 MW by December 
2023, dramatically increasing the amount of distributed resources on 
the grid [154].

This growth in small-scale PV in the US is attributed to lower PV 
module hardware and soft costs (e.g. installation, financing, etc.), as 
well as state and federal clean energy incentives and policies to reduce 
the cost of adding solar arrays [155,156]. One example is the federal 
residential solar investment tax credit (ITC), which provides solar PV 
owners a tax credit for up to 26 % of the cost of a new residential solar 
array in their federal income taxes, greatly reducing the installation cost 
of a new PV system (Table 2). The Inflation Reduction Act of 2022 raises 
this tax credit to 30 % for installations between 2022 and 2032 and is 
expected to continue promoting solar growth in the U.S [157].

Despite the recent growth in small-scale PV and cost reduction 
trends, studies show that small-scale solar is still in the early phase of 
demand, with only 2.2 % of homeowners across the United States with 
solar PV systems on-site [167]. Capital costs for installing distributed 
energy resources remain one of the top barriers to more wide-scale 
adoption. State adoption rates for rooftop solar range from 23.6 % in 
Hawaii and 11 % in California to almost no rooftop solar in states such as 
North and South Dakota and West Virginia [154]. While some of these 
variations are attributed to access to solar resources and electricity 
prices, state and local policies significantly impact the accessibility and 
affordability of distributed, customer-side solar [164,165,172].

In an effort to decarbonize the electric grid, some states have put into 
place renewable or clean energy targets, such as Renewable Portfolio 
Standards present in 30 states plus the District of Columbia. Renewable 
Portfolio Standards set targets for renewable energy contributions to the 
overall electricity grid mix in that state. The literature is mixed on the 
degree of effectiveness of Renewable Portfolio Standards on growing 
solar capacity in the U.S [163–166]. While these may not directly lead to 
compensation for rooftop solar homeowners [165], renewable energy 
targets have generally driven other state policies meant to encourage PV 
growth [164].

One such policy is net metering, which compensates PV owners for 
any excess electricity generated by their solar array that is exported to 
the grid, usually on a per-kilowatt-hour basis [167]. As of 2022, 33 
states offer some form of net metering credits, however, the rate of 
compensation (typically retail rate or less), capacity caps, or other rules 
may impact their effectiveness [165,167]. Much of the literature agrees 
that net metering has had a substantial impact on distributed solar 
growth in the U.S. [164,165], perhaps as much as a doubling of 
small-scale PV capacity between 2008 and 2018 [167].

However, some electric utilities are seeking state regulations to slow 
the transition to more distributed generation sources [168], oftentimes 
by pursuing alternative or reduced forms of net metering [169]. The goal 
of the utility is to reduce the degree of compensation to the homeowner 
for distributed generation supplied back to the grid. Utilities and state 
regulatory agencies may also add additional and unnecessary equipment 
requirements for rooftop solar in interconnection regulations, citing 
safety or other reasons, which can add additional and unnecessary costs 
across the country [173].

In addition to generation-related policies, programs to reduce the 
installation, financing, and permitting soft costs for distributed solar 
have had mixed success in incentivizing solar adoption. Some solutions 
discussed by Ref. [156] to reduce small-scale solar PV soft costs include 
using quote platforms, which are third-party systems to collect and 
compare multiple PV quotes in a standardized, online format. Customer 
aggregation such as through microgrids or community solar projects 
typically reduces transaction costs through interconnection among 
many or one small-scale PV source. According to Ref. [20], particular 
design elements of community solar projects including the ownership 
model, rate design, and subscriber enrollment play an important role in 
the success of these programs in expanding solar adoption and localized 
access to clean energy benefits.

Another possible solution to incentivize the adoption of distributed 
energy resources is by promoting the benefits of grid resilience. Not only 
is distributed solar a cleaner energy resource with lower carbon dioxide 
and traditional pollutants, but microgrids and small-scale networks of 
distributed generation coupled with energy storage can also enhance 

Table 2 
Summary of policy incentives aimed at lowering the cost of PV systems.

Policy Description Level of 
Government

Primary Benefits Primary Drawbacks

Investment 
Tax 
Credit

Tax credit for up to 26 % cost 
of new residential solar array

Federal Reduces overall investment cost making it 
cost-competitive with other generation 
sources [158], 
extended recently in the Inflation 
Reduction Act 2022 and expected to 
continue improving 
cost competitiveness of solar [157,159]

Most clean energy tax credits have gone to higher-income 
households [160,161], scheduled sun setting of the policy 
creates some uncertainty [158]

Renewable 
Portfolio 
Standards

Sets targets for renewable 
energy contributions to the 
grid

State More stringent RPS leads to higher 
renewable capacity growth [162,163], 
encourages other 
state policies that more directly 
incentivize PV growth [164]

Not a direct compensation for rooftop solar homeowners 
[165], impact of RPS 
smaller in longer time series, and smaller compared to federal 
policy impact [166]

Net Metering Compensates residential solar 
homeowners 
for generation 
exported to the grid

State/Utility Reduces the payback time for covering 
solar investment costs [164,165]

Limitations such as lower rates of compensation or caps 
reduce degree of effectiveness [165,167–169], paid for in part 
by low-income 
ratepayers without solar [170,171]
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electrical grid resilience [174,175]. [174] use a discrete choice experi
ment in a survey of over 900 New Yorkers to determine that respondents 
would typically be willing to pay an additional $14 per month of their 
electricity bill for a microgrid system with higher service levels and 
greater reliability. However, literature on resilient energy systems also 
considers lifecycle questions regarding the environmental sustainability 
of materials used in PV + storage microgrids. Batteries and other energy 
storage material production and disposal are under the attention of 
scientists and policymakers [88,176,177]. Despite this, there is good 
agreement in the literature that solar panels and energy storage can have 
a powerful impact on climate mitigation and adaptation [178].

Despite policies that are working to reduce the capital costs of 
cleaner and more resilient, small-scale energy systems, the financial 
system and debt-based approach towards energy transitions are pre
venting even larger-scale deployment of these technology solutions 
[170,179]. For socioeconomic and medically vulnerable populations, 
who particularly stand to benefit from better grid resilience with 
distributed solar, the high investment cost for the technology can make 
it more difficult to attain. Numerous studies show that rooftop solar 
adopters tend to have higher incomes [180,181], live in White-majority 
census tracts [182], and have higher levels of education [181]. How
ever, declining costs of solar [181], and some energy justice programs 
[182] are beginning to improve more equitable solar adoption across 
demographics.

Solar plus storage microgrids present an opportunity for greater 
sustainability towards climate mitigation, as well as more resilient en
ergy solutions able to withstand the consequence of the changing 
climate. Therefore, if policymakers could transform from the financial 
market regulations perspective, more private entities and citizens would 
be able to step in and foster the energy transition via renewable energies 
[179].Based on a review of the literature, support for pro-solar policies 
such as net-metering [167], community shared solar programs [20], and 
energy justice programs [26] are promising avenues for improving more 
equitable access to clean energy resources. In order to develop a robust, 
community-based energy resilience plan, significant engagement with 
multiple communities, technology, and local government partners and 
community members is needed to develop effective and fair programs 
and incentives. Co-production of knowledge using direct feedback from 
community members has the potential to produce more effective solu
tions to complex and wicked environmental problems [183] and energy 
justice challenges [26]. However, more research is needed on the spe
cific policy designs and implementation strategies that work best to 
improve solar adoption inequities and access to the benefits of afford
able clean energy technology [170,182].

6. Conclusion

Climate change is exacerbating the number and magnitude of 
extreme weather events that are affecting communities worldwide. 
Compounding risks are disrupting efforts communities are making to
ward disaster risk reduction, sustainable development, and energy se
curity and transition. Because of financial and infrastructural 
limitations, underserved communities, especially in coastal areas, are 
disproportionately affected by disasters resulting from climaterelated 
natural hazards. Power outages often occur in areas where there is a 
high reliance on the ’traditional grid’ and little or no penetration of 
renewable energies, including solar PV. Indeed, ’traditional’ sources of 
energy have proven to be less resilient to the effects of today’s extreme 
weather events characteristics and this is creating a compounding effect 
on underserved communities who already struggle because of socio
economic disadvantages.

Our study was motivated by the need to provide an overview of both 
the literature and the scientific efforts aimed at developing solutions to 
grid resilience challenges due to a changing climate. Thus, power outage 
modeling does not always accounts for climate change-related impacts 
that may affect a location in the future. Based on our study, research on 

short-term power outage forecast models under current climate condi
tions is ongoing, but there is a lack of focus on long-term climate- 
induced changes in power outages. From our review, weather parame
ters in long-term weather-outage models in addition to hurricane and 
temperature data are needed. Similarly, the relevance of flooding 
overall, and surge along the coastal regions, are parameters that, given 
climate change and its impact on characteristics of storms, should be 
included as well. This review reveals the necessity to evaluate the im
pacts of the uncertainties of each weather variable in the long-term 
weather-outage projections in order to assess the long-term changes in 
weather-related power outages to better plan a more resilient power 
grid. This is particularly important for vulnerable underserved com
munities where energy transition and access to multiple sources of en
ergy appears to be a pathway to strengthen their resilience to climate- 
induced extreme weather events.

Numerous technical solutions to improve grid resilience using 
cleaner energy sources exist, and research in this field is focused on the 
increased need for diversification, decentralization, and integration of 
major generation assets. However, technical challenges still remain 
regarding complementary renewable energy technologies such as en
ergy storage, as well as the study of integration algorithms for inter
mittent renewable sources of electricity. Ongoing research is focusing on 
the development of machine learning and optimized algorithms that can 
better forecast power outages in a given community. These algorithms 
can be scalable and computationally efficient but must be kept generic in 
order to do so; additionally, technological solutions and related eco
nomic analyses depend by a variety of factors, including the physical 
location of the system, the power system topology, the physical attri
butes of the distribution network itself, and the generation/load distri
bution of it. Further, the cost of these technologies, necessary upgrades, 
and transmission infrastructure makes this more challenging, especially 
for socially vulnerable populations that traditionally are not first- 
adopters in cleaner and more resilient energy technology.

Despite the resilience-related benefits to underserved communities, 
promotion of renewable resources as an alternative to traditional sour
ces of energy still faces resistance in the energy transition. For example, 
electricity providers are considered about the loss of profit to more 
distributed solar PV. Furthermore, there is little data availability, 
especially granular data, that would help identify populations more 
subject to power outages in order to focus policy efforts where a higher 
number of people and/or underserved communities are most affected by 
those outages. Last but not least, policymakers should focus on 
providing solutions that would enable the energy market to overcome 
the current debt-based approach in favor of different types of incentives. 
In order to implement effective policies that favor energy security in 
underserved communities in the aftermath of extreme weather events, 
policymakers should access data about power outages at a more gran
ular level that is currently available.

There had been recent progress on promoting energy equity in the U. 
S. at the federal level within the timeframe this study was conducted 
(2022-2023). For example, the Executive Order on Advancing Racial 
Equity and Support for Underserved Communities Through the Federal 
Government (EO 13985, January 20, 2021), federal agencies that pro
mote clean energy are pursuing more transdisciplinary initiatives to 
promote equitable solutions to climate change. The U.S. Department of 
Energy (DOE) was moving forward with a set of initiatives and research 
projects funding aimed at promoting renewable energy use in socially 
vulnerable communities. The U.S. Environmental Protection Agency 
(EPA) was focusing its efforts on equity making sure that communities 
and other relevant stakeholders are involved in the decision-making 
process. While these federal efforts are currently under review in early 
2025, state and local governments may build off of these initiatives to 
continue their efforts at a more local scale.
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